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Abstract Mixed models incorporating the inverse of a

numerator relationship matrix (NRM) are widely used to

estimate genetic parameters and to predict breeding values

in animal breeding. A simple and quick method to directly

calculate the inverse of the NRM has been historically

developed for diploid animal species. Mixed models are

less used in plant breeding partly because the existing

method for diploids is not applicable to autopolyploid

species. This is because of the phenomenon of double

reduction and the possibility that gametes carry alleles

which are identical by descent. This paper generalises the

NRM and its inverse for autopolyploid species, so it can be

easily incorporated into their genetic analysis. The tech-

nique proposed is to first calculate the kinship coefficient

matrix and its inverse as a precursor to calculating the

NRM and its inverse. This allows the NRM to be calculated

for populations containing individuals of mixed ploidy

levels. This generalization can also accommodate uncertain

parentage by generating the ‘‘average’’ relationship matrix.

The possibility that non-inbred parents can produce inbred

progeny (double reduction) is also discussed. Rules are

outlined that are applicable for any level of ploidy.

Examples of use of the matrix are provided using simulated

pedigrees.

Introduction

Restricted maximum likelihood (REML) (Patterson and

Thompson 1971) and best linear unbiased prediction

(BLUP) (Henderson 1974) are important methodologies in

livestock and forest tree breeding for estimating variance

components and predicting breeding values, respectively.

Dramatic increases in computer capacity and advances in

computing techniques have allowed all known ancestral

and collateral pedigree relationships to be incorporated into

REML and BLUP models for the genetic analysis of data

for quantitative traits. The use of such information and

selection data increases the accuracy and precision of

genetic analysis by removing some inherent biases in data

collected in artificial breeding and selection programs.

These biases arise because: selection is based on mea-

surements recorded at different times and locations;

selection changes trait means and variances (Kennedy and

Sorenson 1988); and because mating is non-random

(Wiggans and Misztal 1987). These biases can be removed

because REML and BLUP models are able to better model

covariances among individuals’ genetic effects, which arise

due to the sharing of genes. These covariances are

described statistically using matrices. The matrix describ-

ing the covariance structure of additive genetic effects is

commonly referred to as the additive relationship (A), or

numerator relationship matrix (NRM). Variations of this

matrix is the focus of the present study.

Numerous algorithms for computing A and its inverse

have been developed (Emik and Terril 1949; Tier 1990;

Meuwissen and Luo 1992). Rules were formulated for use
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in diploid species, assuming gametes have no possibility of

carrying two or more alleles which are identical by descent

(IBD). Such rules are inappropriate for use in autopoly-

ploid species and this is perhaps one reason why genetic

analysis methods such as REML and BLUP are not widely

used in autopolyploid species. Prevalence of non-additive

genetic effects, vastly different breeding systems and

unusual cytogenetic phenomena are often cited as reasons

why tools which benefit livestock and forest tree breeding

have limited application in autopolyploid crops such as

potato, sugarcane and strawberries.

For tools such as REML and BLUP to have practical

use in autopolyploid crops all that is required is a mod-

ification of the rules to construct the A inverse, which

conform with the biology of these crops. Our focus has

been the cultivated potato (Solanum tuberosum), which is

a tetraploid (2n = 4x = 48). Double reduction is an

observed phenomenon in this crop and results in sister

chromatids segregating into the same gamete during

meiosis. Though two parents are unrelated, their off-

spring may carry alleles that are IBD. Dihaploids

(2n = 2x = 24) are often routinely induced through a

parthenogenic process and used in breeding programs.

Either the dihaploids are intercrossed, or crossed with

non-cultivated, diploid species. Dihaploids and dihap-

loid-wild species hybrids are able to produce unreduced

2n gametes. The 2n gametes are used to efficiently

introduce the products of the 2x breeding back into cul-

tivated 4x potatoes. Other breeding strategies include

crossing diploid species directly with the Tuberosum

parent, without first creating a dihaploid, and inter-

crossing diploid parents, which are both producing

2n gametes.

The objective of this study was to generalize the rules to

allow the use of the correct A matrix for autopolyploids in

the genetic analysis of quantitative traits. Rather than

define rules to build the A matrix directly, rules are pre-

sented which build a matrix of kinship coefficients, which

can then be transformed to an A matrix appropriate for the

ploidy level, or levels, of the species under study. This

allows the correct A matrix to be derived and used in situ-

ations where not all materials have the same ploidy level

because of dihaploidisation. The rules also allow for situ-

ations when parentage is uncertain. Derivation of

inbreeding coefficients and genetic covariances, assuming

various potato breeding strategies, has already been pre-

sented by Mendoza and Haynes (1973) and Haynes (1990,

1992). The present study differs in that the formulations are

written as functions of the elements of the kinship matrix,

for any ploidy level and for non-standard definitions of

parentage. Computer simulations have been used to check

the integrity of the formulae and to examine inbreeding

coefficients for different levels of ploidy.

Methods

Defining additive genetic covariances

Nomenclature used in this paper generally follows that

used by Gallais (2003). Consider an individual X which

belongs to an autopolyploid population with a gametic

ploidy level denoted by v. It has an additive genetic value

at a single locus represented by

AX ¼
X2vX

i¼1

ai

where ai corresponds to the mean value of allele i in

combination with the gene pool of the population (see

Kempthorne 1957, or Gallais 2003, page 164). Because our

definition of the population extends to the inclusion of

individuals of the same species or closely related species,

but with differing ploidy levels, it is necessary to specify

ploidy level at the individual level. Hence, the use of vX

rather than just v. Another individual, Y, with not

necessarily the same ploidy level as X has an additive

genetic value

AY ¼
X2vY

i0¼1

ai0

The additive genetic covariance between these individuals

is the expectation of the product of AX and AY, which can

be writtenas

CovðX; YÞ ¼ 4vXvY Eðaiai0 Þ

Authors such as Kempthorne (1957) and Gallais (2003)

explain that

Eðaa0Þ ¼ kX;Y Eða2
i Þ

because genes can only be in two states: either they are

identical by descent with probability kX,Y, which is the

coefficient of kinship between X and Y, or they are non-

identical, in which case the expectation is zero. In a

population containing individuals of the same ploidy level,

the expectation of a squared mean allele effect is the

additive variance divided by 2v. Future research will

examine more closely what is the appropriate divisor when

a population contains individuals of varying ploidy levels.

A general form of the covariance can be written as

CovðX; YÞ ¼ 4vXvY kX;Y
r2

A

2vH
ð1Þ

where vH can equal vX or vY or some intermediate value.

With independent assortment Eq. 1 also defines a total

covariance with regard to all segregating loci. When

vX = vY = 1 then Eq. 1 reduces to Cov(X, Y) = 2kX,YrA
2

and when vX = vY = 2 reduces to Cov(X, Y) = 4kX,YrA
2.
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The A matrix was initially defined for diploids as a matrix

containing kinship coefficients among all individuals in the

population, multiplied by two. For tetraploids, the coeffi-

cients are multiplied by four, hexaploids by six, and so

forth. A uniform ploidy level is a reasonable assumption to

make with respect to animal populations. It therefore

makes sense to construct the A matrix directly. However, in

plants this assumption cannot always be made. Therefore

we propose using the K, or kinship matrix, as the basis for

deriving the additive genetic relationship matrix. Once the

elements of K are obtained they are then individually

manipulated with values for vX, vY and vH to derive the

A matrix. The task is to develop recursive rules for building

K and its inverse, rather than A and its inverse.

Deriving K for a population with uniform ploidy level

A diagonal element of K is denoted kii, where i assigns the

position number of an individual in a chronologically

ordered pedigree and describes the kinship coefficient of an

individual with itself. A general formula for its derivation

is (Gallais 2003)

kii ¼
½1þ ð2v� 1ÞFi�

2v
ð2Þ

where Fi is the inbreeding coefficient of individual i. A

recursive system for building K requires kii to be a function

of previously derived elements of the matrix. To proceed,

we use the general formula for computing an inbreeding

coefficient Fi under any ploidy level (Gallais 2003)

Fi ¼
C2

v Prðbj � bkÞ þ C2
v Prðcj � ckÞ þ C1

v C1
v Prðbj � ckÞ

C2
v þ C2

v þ C1
v C1

v

ð3Þ

¼ ½vðv�1ÞPrðbj�bkÞþvðv�1ÞPrðcj� ckÞþ2v2Prðbj� ckÞ�
2vð2v�1Þ

ð4Þ

where one parent p has 2v genes bj (j varying from 1 to 2v)

and the other parent q has 2v genes cj. Hence, Pr(bj : bk) is

the probability that 2 genes drawn from parent p are IBD

either as a result of double reduction at meiosis with

probability u (for v [ 1), or because they are drawn from

different chromosomes with probability 1�u, in which

case they are IBD with probability Fp. Similarly, Pr(cj :

ck) represents the probability that two genes drawn from

parent q are IBD, which equals uþð1�uÞFq. Pr(bj : ck)

is the probability that a random gene from p is IBD to a

random gene from q which by definition is kpq. The

binomial coefficient, Cv
2 (Cv

1) quantifies the number of

combinations of 2 (1) genes from a gamete with v genes.

Thus, after removing the common terms we have

which after further simplification and expressing parental

inbreeding coefficients, Fp and Fq, in terms of their

diagonal elements in K reduces to

kii ¼
1þ ðv� 1Þuþ ðv�1Þð1�uÞðvkppþvkqq�1Þ

2v�1

2v
þ kpq

2
ð6Þ

It can be shown that for diploids (v = 1), the diagonal

element for any individual is purely a function of the

kinship coefficient between its parents. Off-diagonal

elements in K are computed recursively

kij ¼ 0:5ðkip þ kiqÞ; i\j ð7Þ

where p and q are parents of j. The K matrix is symmetric so

kji = kij. A matrix representation of building K row by row is:

Ki ¼
Ki�1 Ki�1si

s0iKi�1 kii

� �
ð8Þ

where si is a vector containing two elements 1
2

corresponding to the female and male parents (if known)

and zeroes elsewhere. In applications such as REML for

estimating variance components and BLUP for predicting

genetic values, the inverse of A is required. A matrix

representation of building K-1 row by row is:

K�1
i ¼

K�1
i�1 0
00 0

� �
þ ðkii � s0iKi�1siÞ�1 sis

0
i �si

�s0i 1

� �
ð9Þ

The left term in the right-hand side of the above equation is

the K-1 matrix for all individuals in the pedigree list prior to

individual i. It has been augmented with an extra row and

column containing zeros in order for it to have the same size

as the K-1 matrix for all individuals in the pedigree list up to

and including individual i. A vector of zeros is represented

as 0. The right term is a matrix of the same size multiplied

by a scalar. The matrix A-1 is obtained by multiplying every

element in K-1 by 2vH/(4 vX vY). Expressing the vector s as

the sum of vectors p and q is useful in situations when

parentage is uncertain. Often important cultivars are derived

from field-picked berries. These cultivars are either selfed or

kii ¼
1þ 1

2
ðv� 1Þ uþ ð1� uÞFp

� �
þ ðv� 1Þ uþ ð1� uÞFq

� �
þ 2vkpq

� �

2v
ð5Þ
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open pollinated with pollen of neighbouring varieties. If the

field trial contains small plots, it may be possible to limit the

number of potential pollen parents to a relatively small

number (\40). In this case, the vector q contains pollination

probabilities in positions corresponding to the candidate

male parents. Henderson (1988) developed this method for

use in livestock genetic evaluation to cover cases where

more than one sire is placed in the paddock for mating. A

probability can be assigned in q to the female parent if there

is some chance of selfing. The vector p will contain a single
1
2

corresponding to the female parent. If ever there is a

situation when female parentage is uncertain, probabilities

can also be assigned in this vector as well. Equation 6 can be

more generally written as

kii ¼
1þ ðv� 1Þuþ 4ðv�1Þð1�uÞðvp0iKi�1piþvq0iKi�1qi�0:25Þ

2v�1

2v
þ p0iKi�1qi þ q0iKi�1pi

(In diploid species and under standard parentage when p

and q contain single 1
2

s corresponding to female and male

parents, it is a straightforward exercise in demonstrating

this formula’s equivalence to 1/2(1 ? kpq)). The scalar

term in Eq. 9, ðkii � s0iKi�1siÞ�1
, which will henceforth be

denoted di, can also be more generally written as

di ¼
 

1þ ðv� 1Þuþ 4ðv�1Þð1�uÞðvp0iKi�1piþvq0iKi�1qi�0:25Þ
2v�1

2v

�p0iKi�1pi � q0iKi�1qi

!�1

ð10Þ

Under standard parentage in diploid organisms Eq. 10

reduces to di = 0.5 - 0.25(kpp ? kqq))-1. Adding the ith

row to K-1 is completed using the instructions contained in

Table 1. These same instructions, but based on di computed

using app and aqq, rather than kpp and kqq, were orginally

reported by Henderson (1976). Instructions for adding the

ith row when parentage is uncertain is shown in Table 2.

To apply this methodology in a potato improvement

program, researchers and breeders will need to build a ped-

igree database for their populations, from which the com-

plete pedigree, or sections of it, can be extracted. The

important point is that for whatever section of the population

that is to be analysed with tools such as REML or BLUP, all

antecedents to the materials under study are required to be

extracted. Algorithms in common use for computing the

diagonals and other elements of A necessary for building the

inverse can be easily modified to build the inverse of K for

any level of ploidy (Tier 1990; Meuwissen and Luo 1992).

Equations 8 and 9 remain sufficiently general for con-

structing K and K-1 when the breeding strategy involves

intercrossing materials of different ploidy levels, provided

the correct diagonal elements can be obtained. This is the

topic of the next section.

Computing diagonal elements of K for derived

autopolyploids

Though our focus will mainly be restricted to the tetraploid

potato, presented formulae will still assume a general

ploidy level. As Haynes (1992) has noted, there are three

main potato breeding strategies involving derived tetrap-

loids and which involve using unreduced 2n gametes:

1. Producing a haploid from a tetraploid parent and

crossing it with a diploid parent to create a haploid-

species hybrid, which is then bred. Improved hybrids,

which are able to produce unreduced gametes, are then

crossed back to a tetraploid parent.

2. Crossing a tetraploid parent directly with a diploid

parent, where the latter is producing 2n gametes

3. Crossing diploid parents which are both producing 2n

gametes

Firstly, consider the implications of producing the haploid

parent. In potatoes, haploids are routinely induced by crossing

S. tuberosum 4x seed parents with 2x selections from known

cultivar groups, which are known for their propensity to

trigger parthenogenesis in the female, e.g. Phureja (Ortiz and

Peloquin 1994). Haploids induced this way are often referred

to as dihaploids in order to distinquish them from haploids of

diploid species. Dihaploid progeny are therefore random

gametic samples of the seed parent and their inbreeding is a

Table 1 Contributions to the K-1 matrix when adding row and col-

umn i

Contribution Position

di (i, i)

-0.5 di (i, f), (i, m), (f, i), (m, i)

0.25 di (f, f), (f, m), (f, f), (m, m)

Parents of individual i have positions in a chronologically ordered

pedigree denoted by f and m

Table 2 Contributions to the K-1 matrix when adding row and col-

umn i

Contribution Position

di (i, i)

-0.5 pj di (i, fj), (fj, i) j ¼ 1; . . .; nf

-0.5 qk di (i, mk), (mk, i) m ¼ 1; . . .; nm

0.25 pjpj0d
i ðfj; fj0 Þ j ¼ 1; . . .; nf ; j0 ¼ 1; . . .; nf

0.25 qkqk0d
i ðmk;mk0 Þ k ¼ 1; . . .; nm; k0 ¼ 1; . . .; nm

0.25 pj qk di (fj, mk) j ¼ 1; . . .; nf ; k ¼ 1; . . .; nm

There are nf and nm candidate female and male parents, respectively,

of individual i and they have positions in a chronologically ordered

pedigree denoted by fj and mk. The probabilities associated with fj and

mk are denoted by pj and qk
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function solely of the parent’s inbreeding. If p denotes the

seed parent and vp its ploidy level, Eq. 4 reduces to

Fi ¼
C2

vp
Prðbj � bkÞ

C2
vp

¼ Fp

and Eq. 5 reduces to

kii ¼
1þ ð2vi � 1ÞFp

2vi

¼
1þ ð2vi � 1Þ uþ ð1�uÞð2vpkpp�1Þ

2vp�1

h i

2vi

Rules for building either the K matrix or its inverse, as

represented by Eqs. 8 or 9 should still be followed. How-

ever, whenever adding a row corresponding to an induced

dihaploid the vector s will contain a single element with a

value 1 corresponding to the seed parent.

Next consider the restoration of the improved haploid-spe-

cies hybrid germplasm to the 4x level. Returning to Eq. (4)

assume that parent p is the tetraploid parent and q is the haploid-

species hybrid parent. The derivation of the probability Pr(bj:
bk) remains as before, but the derivation of Pr(cj: ck) now

becomes dependent on the mechanism for 2n gamete produc-

tion and the parameter, b, which is the average cross-over

frequency between the centromere and loci influencing the trait

under study. The explanation of the differences between first

(FDR) and second division restitution (SDR) and how b affects

the configuation of genotypes in the 2n gametes in each case is

discussed by other authors (Tai 1992; Carputo et al. 2003). In

summary under FDR Pr(cj: ck) = (1 - b/2)Fq ? b/2, while

under SDR Pr(cj: ck) = bFq ? 1 - b. In both cases, we

assume there is the potential for the haploid-species hybrid

parent to be inbred. It is unlikely the tetraploid parent from

which the dihaploid is extracted is related to a wild species

diploid parent. However, there is potential for inbreeding to

appear in the haploid-species hybrid population if more than

one generation of breeding ensues after hybridisation, and

before restoration to the 4x level. Researchers need to keep in

mind that if derived tetraploids are to be analysed together with

standard tetraploids, then the pedigrees of the materials that

gave rise to the derived tetraploids have to be included in the

analysis. The algorithm that computes the diagonals of the K

matrix has to be sufficiently flexible to take into account the

changing ploidy levels and cytological mechanisms among

antecedents and current materials. The formula for computing

the diagonal element for the derived autopolyploid, i, assuming

FDR occurs in parent q, is

kii ¼
1þ ðvp�1Þ

2
uþ ð1�uÞð2vpkpp�1Þ

2vp�1
þ b

2
þ ð1�

b
2
Þð2vqkqq�1Þ
2vq�1

h i

2vp
þ kpq

2

where vq is the ploidy level of a haploid-species hybrid

parent q and vp is the ploidy level of parent p and the

derived autopolyploid. This results because when sampling

genes from the gamete of q there are vp, not vq genes to

sample from and common terms can still be factored out.

The offdiagonal element kpq will be non null if both parents

descend from the individual from which the dihaploid was

extracted. Assuming vp = 2 and vq = 1 because b used here

is specific to the tetraploid potato, we have

kii¼
1

4
þu

8
þ b

16
þð1�uÞð4kpp�1Þ

24
þ
ð1�b

2
Þð2kqq�1Þ

8
þkpq

2

ð11Þ

If it is assumed SDR occurs in parent q a different formula

is used

kii ¼
1

4
þu

8
þ 1�b

8
þð1�uÞð4kpp� 1Þ

24
þbð2kqq� 1Þ

8
þ kpq

2

ð12Þ

Equations 11 and 12 are also applicable if a tetraploid

parent is crossed directly with a diploid producing

unreduced gametes (strategy 2 above). Different formulae

are needed under strategy 3 where two diploid parents are

crossed to produce a derived tetraploid. Generally, FDR

and SDR are mechanisms that occur in the pollen parent.

The most common mechanism that leads to 2n egg

formation is ommission of the second meiotic division,

which though not strictly SDR is equivalent to it (Carputo

et al. 2003). The following formula is relevant to SDR in

egg formation and FDR in pollen formation.

kii ¼
1

4
þ 2� b

16
þ

bð2kpp � 1Þ þ ð1� b
2
Þð2kqq � 1Þ

8
þ kpq

2

ð13Þ

Most diploid potato breeding programs take a parental line

approach. That is, diploid species are screened for some

particular trait. A parent or parents, once identified, are

crossed with either dihaploid, tetraploid or diploid parents.

It is unlikely representations of Eqs. 11, 12 and 13 for

scenarios of uncertain parentage would be necessary.

However, there are examples of breeding programs that

take a population improvement approach with diploids. In

such cases, open-pollinated seed may be collected from the

field and occasionally 4x seedlings are recovered;

presumably the result of 2x - 2x pollinations where both

parents produced 2n gametes. If a set of candidate male

parents can be identified, Eq. 13 can be more generally

written to accommodate uncertain paternity

kii ¼
1

4
þ 2� b

16

þ
4bð2p0iKi�1pi � 0:25Þ þ 4ð1� b

2
Þð2q0iKi�1qi � 0:25Þ

8

þ p0iKi�1qi þ q0iKi�1pi: ð14Þ
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Pedigree examples

Four pedigree examples were designed to check the

validity of our formulae and to investigate the effects of

different pedigrees on kinship coefficients. In the first three

pedigrees (see Table 3), all individuals are assumed to have

the sample ploidy level and individuals 1 to 3 constitute the

base generation. Parentage is known in Pedigree 1. Indi-

viduals 7 and 8 have uncertain parentage in Pedigrees 2 and

3. Pedigree 3 differs in that there is a probability individ-

uals 7 and 8 are selfed. The candidate female parents of

offspring 7 are 3 and 5 with probabilities of 0.3 and 0.7,

respectively, and the candidate male parents of offspring 7

are the same candidates (3 and 5) but with different

probabilities of 0.4 and 0.6, respectively. A similar situa-

tion was created for offspring 8. Pedigree 4 (see Fig. 1)

was designed to check the validity of our rules for breeding

strategies involving derived autotetraploids and unreduced

gametes.

Matrices K and K-1 were computed for Pedigree 1

assuming three ploidy levels: diploid (v = 1); tetraploid

(v = 2); and octoploid (v = 4). Matrices K and K-1 were

computed for Pedigrees 2 and 3 assuming a tetraploid

species only. In the case of Pedigree 4, it was assumed

individuals 1 and 8 are tetraploid; individuals 3 and 4 are

dihaploid, and individuals 2, 5, 6 and 7 are diploid.

Simulation

A single locus gene drop simulation (MacCluer et al. 1986)

was written in order to examine the integrity of our for-

mulae for computing kinship coefficients. In a gene drop

simulation unique alleles at a single locus are assigned to

each founder and a genotype is created for each descendent

by Mendelian segregation of parental alleles. Gene drop

simulations were completed only for pedigree 1, assuming

a tetraploid species, and for pedigree 4. Individuals 1, 2 and

3 are the founders in the case of Pedigree 1 and individuals

1 and 2 are the founders in the case of Pedigree 4. Pseu-

docode is presented in Appendix demonstrating how the

simulation works in the case of pedigree 4. Pedigree 4 is

more complicated in terms of unusual cytological events:

individual 1 gives rise to dihaploid individuals 3 and 4 via

parthenogenesis; and individual 7 produces unreduced

gametes via first division restitution. The pseudocode

reveals how double reduction occurs with probability u in

the simulation of gametes produced by individual 1. When

creating individual 8, first division restitution occurs with

probability b when sampling alleles from individual 7. The

main loop in the pseudo-code repeats the gene drop 50,000

times (FOR DROP:=1 to 50,000 in Appendix). For each

drop, and for every pairing of individuals, i, j, the number

of instances where a gene sampled from individual i is IBD

to a gene sampled from individual j, is counted and divided

by 4 vi vj to derive the coefficient kij for this drop. It is

irrelevant whether the main loop is seen as repeating the

drop at the same locus 50,000 times or completing drops at

50,000 different loci. By repeating the drop 50,000 times,

we are manually computing a K matrix for use in an

infinitesimal model (Bulmer 1980). That is, the gene drop

simulation should in theory produce the same K matrix as

that derived from rules which implicilty assume an aver-

aging over a very large number of loci. In this sense, the K

matrix computed using one method (simulation or rules) is

not the true or correct matrix, while the matrix computed

using the other method is an estimate. If our rules are

correct, both methods should produce the same K matrix.

Results

Table 4 shows the diagonal elements of the A and A-1

matrices, computed via the formulae for diploids, tetrap-

loids and octoploids. The diagonal elements of A and

Table 3 Three pedigree

examples, where all individuals

are assumed to have the same

ploidy level

There are two or more candidate

female or male parents

(Pedigrees 2 and 3), the

probability of parentage is

shown in parentheses

Individual Pedigree 1 Pedigree 2 Pedigree 3

Female parent Male parent Female parent Male parent Female parent Male parent

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 1 2 1 2 1 2

5 1 4 1 4 1 4

6 3 5 3 5 3 5

7 5 6 1 (0.3) 3 (0.4) 3 (0.3) 3 (0.4)

2 (0.7) 4 (0.6) 5 (0.7) 5 (0.6)

8 6 7 1 (0.1) 4 (0.2)

3 (0.3) 6 (0.2) 6 (0.3) 6 (0.3)

5 (0.7) 7 (0.8) 7 (0.6) 7 (0.5)
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computed via the simulation for tetraploids are also shown.

(The K and K-1 matrices have been multiplied by 2v and 1/

2v, respectively, to obtain A and A-1). The value for u was

set at either 0 or 0.1 (Table 5). Diagonal elements of A,

denoted as aii are equivalent when computed using the

formulae and when using simulation. The K matrices

computed from formulae and from simulation, for Pedigree

4, are equivalent to the 3rd decimal place (see Table 6).

These results demonstrate our formulae for computing an

individual’s kinship coefficient with itself and the tabular

method for constructing K and K-1 (hence A and A-1) are

correct.

Table 4 also shows that when assuming the same pedi-

gree structures, species with higher ploidy levels will

exhibit greater inbreeding. For example, without double

reduction, the diagonal element a88, which is equal to

1 ? (2v - 1)F8, where F8 is the inbreeding coefficient for

individual 8, increased from 1.41 for diploids to 1.48 for

tetraploids and 1.51 for octoploids. When the double

reduction rate was assumed to be 0.1 for tetraploids and

octoploids, the diagonal element became even higher: 1.68

for tetraploids; and 1.73 for octoploids.

In diploids, when parents of an individual are unrelated,

the progeny are not inbred (for example, a66 = 1.0 for dip-

loids, Table 4). However, assuming no double reduction

(u ¼ 0), a66 became 1.04 and 1.05 for the tetraploid and

octoploid situations, respectively. This occurs because one of

the parents (individual 5) is partly inbred, and its gametes can

carry alleles IBD. With double reduction (u ¼ 0:1), there is

even greater chance gametes from parent 5 are identical by

descent. Parent 3, though not inbred itself, now has some

probabililty of producing gametes which carry alleles IBD.

This translates to higher values for a66: 1.18 and 1.20.

Discussion

Generally a kinship coefficient is defined as the probability of

drawing a set of genes in one zygote, and another set in another

zygote, with identity of descent relationships between the two

sets. The simplest type of kinship coefficient considers

drawing only a single gene from each zygote. Wright (1922) in

defining what he called the correlation of genic values, with

regard to a quantitative trait, between two diploid individuals,

Fig. 1 Pedigree 4. Individual 1
is a cultivated tetraploid and

produces two dihaploid

offsprings via parthenogenesis

(3 and 4), which in turn are

mated with a 2x individual (2)

to produce two offspring (5 and

6). Individual 7 produces

unreduced gametes so that it can

be crossed back to individual 1
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used an expression in which the numerator was twice this type

of kinship coefficient. According to Hill (1995), it was Jay

Lush who first introduced the concept of a matrix in which

cells contain the numerator term in Wright’s expression and

could be applied in describing the additive genetic variance-

covariance structure of a population. It is animal breeding

custom to denote this matrix as the numerator relationship

matrix or A matrix. The matrix is important in animal breeding

because it is central to the estimation of variances using

REML and the prediction of breeding values using BLUP.

In plant breeding, it has been less of a custom to use this

matrix. This may be partly due to the fact that plants are

often polyploid and exhibit phenomena such as double

reduction, making current rules for computing the diagonal

elements of A no longer applicable. Another reason may be

that variety selection is often emphasised in plant breeding,

while population improvement appears to receive less

attention. Hence, breeding values are deemed less impor-

tant and there is less urgency in adopting techniques such

as BLUP. Presently clonal replication is not an option in

Table 4 Diagonal elements of A and A-1 for Pedigree 1 for different ploidy levels (v = 1, 2 and 4) and with ðu ¼ 0:1Þ and without ðu ¼ 0Þ
double reduction, derived using rules (aii and aii are the diagonal elements of A and A-1 for individual i, respectively)

Individual Female parent Male parent Simulation Diploid (v = 1) Tetraploid (v = 2) Octoploid (v = 4)

u ¼ 0 u ¼ 0:1 u ¼ 0 u ¼ 0 u ¼ 0:1 u ¼ 0 u ¼ 0:1

aii aii aii aii aii aii aii aii aii aii aii aii

1 0 0 1.00 1.11 1.00 2.00 1.00 2.00 1.10 1.77 1.00 2.00 1.10 1.76

2 0 0 1.00 1.11 1.00 1.50 1.00 1.50 1.10 1.34 1.00 1.50 1.10 1.33

3 0 0 1.00 1.11 1.00 1.57 1.00 1.52 1.10 1.36 1.00 1.51 1.10 1.35

4 1 2 1.00 1.13 1.00 2.50 1.00 2.50 1.13 2.16 1.00 2.50 1.14 2.13

5 1 4 1.25 1.41 1.25 3.14 1.25 3.05 1.41 2.65 1.25 3.02 1.42 2.59

6 3 5 1.04 1.18 1.00 3.45 1.04 3.15 1.18 2.76 1.05 3.06 1.20 2.65

7 5 6 1.36 1.54 1.31 2.88 1.36 2.64 1.54 2.32 1.38 2.56 1.58 2.22

8 6 7 1.48 1.68 1.41 2.37 1.48 2.14 1.68 1.89 1.51 2.06 1.73 1.80

Diagonal elements of A when v = 2 are also shown when derived from simulation

Table 5 Diagonal elements of

A and A-1 for Pedigrees 2 and 3

for ploidy level v = 2 and with

ðu ¼ 0:1Þ and without ðu ¼ 0Þ
double reduction, derived using

rules

Individual Pedigree 2 Pedigree 3

u ¼ 0 u ¼ 0:1 u ¼ 0 u ¼ 0:1

aii aii aii aii aii aii aii aii

1 1.00 2.04 1.10 2.04 1.00 2.01 1.10 1.78

2 1.00 1.71 1.10 1.71 1.00 1.50 1.10 1.34

3 1.00 1.63 1.10 1.63 1.00 1.74 1.10 1.55

4 1.00 2.66 1.13 2.66 1.00 2.52 1.13 2.17

5 1.25 2.75 1.41 2.75 1.25 3.28 1.41 2.84

6 1.04 2.05 1.18 2.11 1.04 2.26 1.18 1.97

7 1.00 2.03 1.15 2.03 1.21 2.36 1.38 2.02

8 1.12 1.84 1.28 1.84 1.32 1.87 1.51 1.61

Table 6 The K matrix for

pedigree 4 under the assumption

that u = 1/6 and

b ¼ 0:0822e15:4635u � 1

The matrix compared when

derived from rules or derived

using simulation are equivalent

to the third decimal place

1 2 3 4 5 6 7 8

1 0.250 0.000 0.250 0.250 0.125 0.125 0.125 0.188

2 0.000 0.500 0.000 0.000 0.250 0.250 0.250 0.125

3 0.250 0.000 0.583 0.250 0.292 0.125 0.208 0.229

4 0.250 0.000 0.250 0.583 0.125 0.292 0.208 0.229

5 0.125 0.250 0.292 0.125 0.500 0.188 0.344 0.234

6 0.125 0.250 0.125 0.292 0.188 0.500 0.344 0.234

7 0.125 0.250 0.208 0.208 0.344 0.344 0.594 0.359

8 0.187 0.125 0.229 0.229 0.234 0.234 0.360 0.408
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animal breeding and incorporating information from rela-

tives is an important issue, hence the motivation for using

BLUP. Finally, for many species plants can survive when

inbred, making the prediction of genetic values and pre-

dicting the outcome of crosses much easier.

Nevertheless, the authors believe BLUP and REML do

have applicability in plant breeding and have sought to

generalise the rules for computing the diagonal elements of

A. Given the correct diagonal elements, the tabular method

for constructing the inverse remains unchanged. Breeders of

outcrossing plants generally take a broad approach when

looking for new varieties. Each cycle of variety selection

begins with a large seedling generation grown from true

seeds. A pool of elite parents is maintained for generating

this seed. It would be useful in our opinion to integrate all

data collected across the subsequent clonal generations, and

collected across all cycles of variety selection, into a single,

meta-type analysis. BLUP would be used to predict breeding

values for all genotypes. By comparing genotypes used

across generations and across testing sites, the breeder is

aided in identifying the best set of elite parents, not just

within their own program, but potentially on a national or

regional basis.

A correct A matrix for auto-polyploid species would also

have applicability in mixed models of the type pioneered by

Yu et al. (2006) for use in association mapping. Malosetti

et al. (2007) have used such a model to study quantitative

trait loci (QTL) affecting variation in late blight resistance in

potato cultivars. They partitioned the total genetic variation

into a fixed part associated with a QTL and a random part due

to polygenes. They demonstrated a clear improvement in

statistical accuracy when using a pedigree derived A matrix

to model the variance-covariance structure of the polygenic

component, relative to a structure that only had diagonal

elements. Because they were using only available statistical

packages and not special purpose software, we assume the

A matrix was constructed assuming a diploid species. Hence,

additional gain in accuracy could be achieved using rules

applicable for an auto-tetraploid species.

A feature of potato breeding is the intense selection that

occurs in the first clonal generation. All seedling progenies

(the number often exceeds 100,000) are replicated once into

single hill plots. It is not uncommon for only 1–3% of the

progeny to remain after single hill selection. For these

progenies to be accurately assessed for future use as parents,

it is important that their breeding values have a distribution

that resembles the actual population distribution. Consider

an analysis that includes only individuals from a small,

intensely selected group. A breeding value gained from such

an analysis may falsely indicate eliteness, because it is not

expressed on a true population scale. To obtain a distribution

that better reflects reality, the analysis must include all

founders as well as progeny that are not selected. An A matrix

used in the analysis helps to properly position an individual’s

breeding value in a population context.

First stage selection is often based on agronomic traits,

because they are easy to assess. Traits, which are the actual

focus of the breeding effort, such as processing characteristics

and eating quality, only get recorded in advanced selection

stages because they are harder to measure. Use of the A matrix

linking descendents to their antecedents in a REML multi-

variate analysis will help to recover the population variance

for traits recorded only on small, intensely selected groups;

and to establish the correlation between traits recorded in first

stages and traits recorded in advanced stages of selection.

These correlations and recovered variances for non-agro-

nomic traits should be be used in subsequent, multi-variate

BLUP analyses for the prediction of breeding values.

If the meta-type analysis covers all current and historical

materials used in breeding and selection, a complication

will arise if some genotypes used are outside the normal

range of cultivar groups. Examples are: the direct use of a

wild species which has a different ploidy level; or the use

of dihaploids derived from the cultivated species. If this is

the case then the factor which is multiplied by the kinship

coefficient to obtain Wright’s numerator expression will

have different values. The recursive rules for computing

diagonal elements of A assume the value for this factor to

be constant. A constant value can only be used if a uniform

ploidy level is assumed; for example, the factor is 2 if all

individuals are diploid and 4 if all individuals are tetra-

ploid. The value this factor takes stems from our assump-

tions on what is the nature of the additive genetic variance

and is dependent on how we define the gene pool and

average effects of alleles.

Because of the potential for materials of different ploidy

levels to be used, we have decided to focus on deriving rules

for constructing the kinship coefficient matrix, denoted K, and

its inverse, K-1. These rules are independent from any

assumptions on what is the nature of an additive genetic

covariance. Once constructed K, or its inverse, K-1 can be

translated to A or A-1 by multiplying each cell individually by

its appropriate factor. The value of this factor for a cell which

defines the genetic covariance between two individuals of

different ploidy levels is the subject of ongoing research.

However, for the present the rules for deriving K and K-1

will be beneficial to researchers working in crops which are

assumed to have a constant ploidy level. Kerr et al. (2009)

recently performed an integrated analysis on potato data. The

analysis used BLUP incorporating the correct A for an auto-

tetraploid species. The analysis was somewhat limited in that

only recent ancestors of test materials were included in the

analysis and any genotype with a differing ploidy level was

excluded. There will also be benefit for those researchers keen

to ascertain what are the kinship coefficients among materials

of different ploidy levels.
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